Module aiolirest.models.model_response
HPE Machine Learning Inference Software (MLIS/Aioli)
HPE MLIS is Aioli – The AI On-line Inference Platform that enables easy deployment, tracking, and serving of your packaged models regardless of your preferred AI framework.
The version of the OpenAPI document: 1.0.0 Contact: community@determined-ai Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
Expand source code
# coding: utf-8
"""
HPE Machine Learning Inference Software (MLIS/Aioli)
HPE MLIS is *Aioli* -- The AI On-line Inference Platform that enables easy deployment, tracking, and serving of your packaged models regardless of your preferred AI framework.
The version of the OpenAPI document: 1.0.0
Contact: community@determined-ai
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import pprint
import re # noqa: F401
import json
from typing import Any, ClassVar, Dict, List, Optional
from pydantic import BaseModel, StrictInt, StrictStr
from pydantic import Field
try:
from typing import Self
except ImportError:
from typing_extensions import Self
class ModelResponse(BaseModel):
"""
Provides a set of values that are returned by querying for models
""" # noqa: E501
description: Optional[StrictStr] = Field(default=None, description="The description of desribing the model")
display_name: Optional[StrictStr] = Field(default=None, description="The name displayed that is human readable", alias="displayName")
image: Optional[StrictStr] = Field(default=None, description="The default container image to execute the model (if available)")
latest_version_id_str: Optional[StrictStr] = Field(default=None, description="The latest version of the model", alias="latestVersionIdStr")
latest_version_size_in_bytes: Optional[StrictInt] = Field(default=None, description="The number of bytes for the latest model", alias="latestVersionSizeInBytes")
metadata: Optional[Dict[str, StrictStr]] = Field(default=None, description="Extra argument in case more variables need to be stored.")
format: Optional[StrictStr] = Field(default=None, description="The format of the model", alias="modelFormat")
name: Optional[StrictStr] = Field(default=None, description="The name used in model specification")
__properties: ClassVar[List[str]] = ["description", "displayName", "image", "latestVersionIdStr", "latestVersionSizeInBytes", "metadata", "modelFormat", "name"]
model_config = {
"populate_by_name": True,
"validate_assignment": True
}
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.model_dump(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> Self:
"""Create an instance of ModelResponse from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self) -> Dict[str, Any]:
"""Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
`self.model_dump(by_alias=True)`:
* `None` is only added to the output dict for nullable fields that
were set at model initialization. Other fields with value `None`
are ignored.
"""
_dict = self.model_dump(
by_alias=True,
exclude={
},
exclude_none=True,
)
return _dict
@classmethod
def from_dict(cls, obj: Dict) -> Self:
"""Create an instance of ModelResponse from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return cls.model_validate(obj)
_obj = cls.model_validate({
"description": obj.get("description"),
"displayName": obj.get("displayName"),
"image": obj.get("image"),
"latestVersionIdStr": obj.get("latestVersionIdStr"),
"latestVersionSizeInBytes": obj.get("latestVersionSizeInBytes"),
"metadata": obj.get("metadata"),
"modelFormat": obj.get("modelFormat"),
"name": obj.get("name")
})
return _obj
Classes
class ModelResponse (**data: Any)
-
Provides a set of values that are returned by querying for models
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Expand source code
class ModelResponse(BaseModel): """ Provides a set of values that are returned by querying for models """ # noqa: E501 description: Optional[StrictStr] = Field(default=None, description="The description of desribing the model") display_name: Optional[StrictStr] = Field(default=None, description="The name displayed that is human readable", alias="displayName") image: Optional[StrictStr] = Field(default=None, description="The default container image to execute the model (if available)") latest_version_id_str: Optional[StrictStr] = Field(default=None, description="The latest version of the model", alias="latestVersionIdStr") latest_version_size_in_bytes: Optional[StrictInt] = Field(default=None, description="The number of bytes for the latest model", alias="latestVersionSizeInBytes") metadata: Optional[Dict[str, StrictStr]] = Field(default=None, description="Extra argument in case more variables need to be stored.") format: Optional[StrictStr] = Field(default=None, description="The format of the model", alias="modelFormat") name: Optional[StrictStr] = Field(default=None, description="The name used in model specification") __properties: ClassVar[List[str]] = ["description", "displayName", "image", "latestVersionIdStr", "latestVersionSizeInBytes", "metadata", "modelFormat", "name"] model_config = { "populate_by_name": True, "validate_assignment": True } def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True)) def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict()) @classmethod def from_json(cls, json_str: str) -> Self: """Create an instance of ModelResponse from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ _dict = self.model_dump( by_alias=True, exclude={ }, exclude_none=True, ) return _dict @classmethod def from_dict(cls, obj: Dict) -> Self: """Create an instance of ModelResponse from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "description": obj.get("description"), "displayName": obj.get("displayName"), "image": obj.get("image"), "latestVersionIdStr": obj.get("latestVersionIdStr"), "latestVersionSizeInBytes": obj.get("latestVersionSizeInBytes"), "metadata": obj.get("metadata"), "modelFormat": obj.get("modelFormat"), "name": obj.get("name") }) return _obj
Ancestors
- pydantic.main.BaseModel
Class variables
var description : Optional[str]
var display_name : Optional[str]
var format : Optional[str]
var image : Optional[str]
var latest_version_id_str : Optional[str]
var latest_version_size_in_bytes : Optional[int]
var metadata : Optional[Dict[str, str]]
var model_computed_fields
var model_config
var model_fields
var name : Optional[str]
Static methods
def from_dict(obj: Dict) ‑> Self
-
Create an instance of ModelResponse from a dict
Expand source code
@classmethod def from_dict(cls, obj: Dict) -> Self: """Create an instance of ModelResponse from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "description": obj.get("description"), "displayName": obj.get("displayName"), "image": obj.get("image"), "latestVersionIdStr": obj.get("latestVersionIdStr"), "latestVersionSizeInBytes": obj.get("latestVersionSizeInBytes"), "metadata": obj.get("metadata"), "modelFormat": obj.get("modelFormat"), "name": obj.get("name") }) return _obj
def from_json(json_str: str) ‑> Self
-
Create an instance of ModelResponse from a JSON string
Expand source code
@classmethod def from_json(cls, json_str: str) -> Self: """Create an instance of ModelResponse from a JSON string""" return cls.from_dict(json.loads(json_str))
Methods
def model_post_init(self: BaseModel, context: Any, /) ‑> None
-
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Args
self
- The BaseModel instance.
context
- The context.
Expand source code
def init_private_attributes(self: BaseModel, context: Any, /) -> None: """This function is meant to behave like a BaseModel method to initialise private attributes. It takes context as an argument since that's what pydantic-core passes when calling it. Args: self: The BaseModel instance. context: The context. """ if getattr(self, '__pydantic_private__', None) is None: pydantic_private = {} for name, private_attr in self.__private_attributes__.items(): default = private_attr.get_default() if default is not PydanticUndefined: pydantic_private[name] = default object_setattr(self, '__pydantic_private__', pydantic_private)
def to_dict(self) ‑> Dict[str, Any]
-
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
self.model_dump(by_alias=True)
:None
is only added to the output dict for nullable fields that were set at model initialization. Other fields with valueNone
are ignored.
Expand source code
def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ _dict = self.model_dump( by_alias=True, exclude={ }, exclude_none=True, ) return _dict
def to_json(self) ‑> str
-
Returns the JSON representation of the model using alias
Expand source code
def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict())
def to_str(self) ‑> str
-
Returns the string representation of the model using alias
Expand source code
def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True))