Module aiolirest.models.trained_model_registry_request
HPE Machine Learning Inference Software (MLIS/Aioli)
HPE MLIS is Aioli – The AI On-line Inference Platform that enables easy deployment, tracking, and serving of your packaged models regardless of your preferred AI framework.
The version of the OpenAPI document: 1.0.0 Contact: community@determined-ai Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
Expand source code
# coding: utf-8
"""
HPE Machine Learning Inference Software (MLIS/Aioli)
HPE MLIS is *Aioli* -- The AI On-line Inference Platform that enables easy deployment, tracking, and serving of your packaged models regardless of your preferred AI framework.
The version of the OpenAPI document: 1.0.0
Contact: community@determined-ai
Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
""" # noqa: E501
from __future__ import annotations
import pprint
import re # noqa: F401
import json
from typing import Any, ClassVar, Dict, List, Optional
from pydantic import BaseModel, StrictBool, StrictStr
from pydantic import Field
try:
from typing import Self
except ImportError:
from typing_extensions import Self
class TrainedModelRegistryRequest(BaseModel):
"""
Provides the metadata that describes how to access a named model registry to enable download of a trained model for deployment.
""" # noqa: E501
access_key: Optional[StrictStr] = Field(default=None, description="The access key, username or team name for the registry. * `s3` - The access key/username. * `ngc` - The optional NGC team name.", alias="accessKey")
bucket: Optional[StrictStr] = Field(default=None, description="The bucket or organization name. * `s3` - The required S3 bucket name. * `ngc` - The required NGC org name.")
endpoint_url: Optional[StrictStr] = Field(default=None, description="The registry endpoint (host): * `s3` - The S3 registry endpoint. Required. * `openllm` - The huggingface.co-compatible endpoint (default https://huggingface.co). * `ngc` - The NVIDIA NGC-compatible api endpoint (default https://api.ngc.nvidia.com).", alias="endpointUrl")
insecure_https: Optional[StrictBool] = Field(default=None, description="For https endpoints, the server certificate will be accepted without validation.", alias="insecureHttps")
modified_at: Optional[StrictStr] = Field(default=None, description="Date-time of last modification of the registry. This is a read-only field and is automatically updated.", alias="modifiedAt")
name: StrictStr = Field(description="The name of the registry. Must begin with a letter, but may contain letters, numbers, and hyphen.")
secret_key: StrictStr = Field(description="The secret key is the password, secret key, or access token for the registry. * `s3` - The secret key for the S3 bucket. * `openllm` - The access token for huggingface.co and is supplied to the launched container via the `HF_TOKEN` environment variable.bucket. * `ngc` - The requied NVIDIA NGC apikey.", alias="secretKey")
type: StrictStr = Field(description="The type of this model registry. Must be one of the values: (s3, http, openllm, ngc). * `s3` - Configuration to enable access to an s3 bucket. * `openllm` - Configuration to enable direct download of OpenLLM models from huggingface.co. Provide your access token in the `secretKey` field. * `ngc` - Configuration to enable direct download from the NVIDA NGC: AI Development Catalog. * `http` - Not yet supported. Configuration to enable model download from a protected http endpoint that requires login.")
__properties: ClassVar[List[str]] = ["accessKey", "bucket", "endpointUrl", "insecureHttps", "modifiedAt", "name", "secretKey", "type"]
model_config = {
"populate_by_name": True,
"validate_assignment": True
}
def to_str(self) -> str:
"""Returns the string representation of the model using alias"""
return pprint.pformat(self.model_dump(by_alias=True))
def to_json(self) -> str:
"""Returns the JSON representation of the model using alias"""
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
return json.dumps(self.to_dict())
@classmethod
def from_json(cls, json_str: str) -> Self:
"""Create an instance of TrainedModelRegistryRequest from a JSON string"""
return cls.from_dict(json.loads(json_str))
def to_dict(self) -> Dict[str, Any]:
"""Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
`self.model_dump(by_alias=True)`:
* `None` is only added to the output dict for nullable fields that
were set at model initialization. Other fields with value `None`
are ignored.
"""
_dict = self.model_dump(
by_alias=True,
exclude={
},
exclude_none=True,
)
return _dict
@classmethod
def from_dict(cls, obj: Dict) -> Self:
"""Create an instance of TrainedModelRegistryRequest from a dict"""
if obj is None:
return None
if not isinstance(obj, dict):
return cls.model_validate(obj)
_obj = cls.model_validate({
"accessKey": obj.get("accessKey"),
"bucket": obj.get("bucket"),
"endpointUrl": obj.get("endpointUrl"),
"insecureHttps": obj.get("insecureHttps"),
"modifiedAt": obj.get("modifiedAt"),
"name": obj.get("name"),
"secretKey": obj.get("secretKey"),
"type": obj.get("type")
})
return _obj
Classes
class TrainedModelRegistryRequest (**data: Any)
-
Provides the metadata that describes how to access a named model registry to enable download of a trained model for deployment.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Expand source code
class TrainedModelRegistryRequest(BaseModel): """ Provides the metadata that describes how to access a named model registry to enable download of a trained model for deployment. """ # noqa: E501 access_key: Optional[StrictStr] = Field(default=None, description="The access key, username or team name for the registry. * `s3` - The access key/username. * `ngc` - The optional NGC team name.", alias="accessKey") bucket: Optional[StrictStr] = Field(default=None, description="The bucket or organization name. * `s3` - The required S3 bucket name. * `ngc` - The required NGC org name.") endpoint_url: Optional[StrictStr] = Field(default=None, description="The registry endpoint (host): * `s3` - The S3 registry endpoint. Required. * `openllm` - The huggingface.co-compatible endpoint (default https://huggingface.co). * `ngc` - The NVIDIA NGC-compatible api endpoint (default https://api.ngc.nvidia.com).", alias="endpointUrl") insecure_https: Optional[StrictBool] = Field(default=None, description="For https endpoints, the server certificate will be accepted without validation.", alias="insecureHttps") modified_at: Optional[StrictStr] = Field(default=None, description="Date-time of last modification of the registry. This is a read-only field and is automatically updated.", alias="modifiedAt") name: StrictStr = Field(description="The name of the registry. Must begin with a letter, but may contain letters, numbers, and hyphen.") secret_key: StrictStr = Field(description="The secret key is the password, secret key, or access token for the registry. * `s3` - The secret key for the S3 bucket. * `openllm` - The access token for huggingface.co and is supplied to the launched container via the `HF_TOKEN` environment variable.bucket. * `ngc` - The requied NVIDIA NGC apikey.", alias="secretKey") type: StrictStr = Field(description="The type of this model registry. Must be one of the values: (s3, http, openllm, ngc). * `s3` - Configuration to enable access to an s3 bucket. * `openllm` - Configuration to enable direct download of OpenLLM models from huggingface.co. Provide your access token in the `secretKey` field. * `ngc` - Configuration to enable direct download from the NVIDA NGC: AI Development Catalog. * `http` - Not yet supported. Configuration to enable model download from a protected http endpoint that requires login.") __properties: ClassVar[List[str]] = ["accessKey", "bucket", "endpointUrl", "insecureHttps", "modifiedAt", "name", "secretKey", "type"] model_config = { "populate_by_name": True, "validate_assignment": True } def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True)) def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict()) @classmethod def from_json(cls, json_str: str) -> Self: """Create an instance of TrainedModelRegistryRequest from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ _dict = self.model_dump( by_alias=True, exclude={ }, exclude_none=True, ) return _dict @classmethod def from_dict(cls, obj: Dict) -> Self: """Create an instance of TrainedModelRegistryRequest from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "accessKey": obj.get("accessKey"), "bucket": obj.get("bucket"), "endpointUrl": obj.get("endpointUrl"), "insecureHttps": obj.get("insecureHttps"), "modifiedAt": obj.get("modifiedAt"), "name": obj.get("name"), "secretKey": obj.get("secretKey"), "type": obj.get("type") }) return _obj
Ancestors
- pydantic.main.BaseModel
Class variables
var access_key : Optional[str]
var bucket : Optional[str]
var endpoint_url : Optional[str]
var insecure_https : Optional[bool]
var model_computed_fields
var model_config
var model_fields
var modified_at : Optional[str]
var name : str
var secret_key : str
var type : str
Static methods
def from_dict(obj: Dict) ‑> Self
-
Create an instance of TrainedModelRegistryRequest from a dict
Expand source code
@classmethod def from_dict(cls, obj: Dict) -> Self: """Create an instance of TrainedModelRegistryRequest from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "accessKey": obj.get("accessKey"), "bucket": obj.get("bucket"), "endpointUrl": obj.get("endpointUrl"), "insecureHttps": obj.get("insecureHttps"), "modifiedAt": obj.get("modifiedAt"), "name": obj.get("name"), "secretKey": obj.get("secretKey"), "type": obj.get("type") }) return _obj
def from_json(json_str: str) ‑> Self
-
Create an instance of TrainedModelRegistryRequest from a JSON string
Expand source code
@classmethod def from_json(cls, json_str: str) -> Self: """Create an instance of TrainedModelRegistryRequest from a JSON string""" return cls.from_dict(json.loads(json_str))
Methods
def model_post_init(self: BaseModel, context: Any, /) ‑> None
-
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Args
self
- The BaseModel instance.
context
- The context.
Expand source code
def init_private_attributes(self: BaseModel, context: Any, /) -> None: """This function is meant to behave like a BaseModel method to initialise private attributes. It takes context as an argument since that's what pydantic-core passes when calling it. Args: self: The BaseModel instance. context: The context. """ if getattr(self, '__pydantic_private__', None) is None: pydantic_private = {} for name, private_attr in self.__private_attributes__.items(): default = private_attr.get_default() if default is not PydanticUndefined: pydantic_private[name] = default object_setattr(self, '__pydantic_private__', pydantic_private)
def to_dict(self) ‑> Dict[str, Any]
-
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
self.model_dump(by_alias=True)
:None
is only added to the output dict for nullable fields that were set at model initialization. Other fields with valueNone
are ignored.
Expand source code
def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ _dict = self.model_dump( by_alias=True, exclude={ }, exclude_none=True, ) return _dict
def to_json(self) ‑> str
-
Returns the JSON representation of the model using alias
Expand source code
def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict())
def to_str(self) ‑> str
-
Returns the string representation of the model using alias
Expand source code
def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True))