Module aiolirest.models.user

HPE Machine Learning Inference Software (MLIS/Aioli)

HPE MLIS is Aioli – The AI On-line Inference Platform that enables easy deployment, tracking, and serving of your packaged models regardless of your preferred AI framework.

The version of the OpenAPI document: 1.0.0 Contact: community@determined-ai Generated by OpenAPI Generator (https://openapi-generator.tech)

Do not edit the class manually.

Expand source code
# coding: utf-8

"""
    HPE Machine Learning Inference Software (MLIS/Aioli)

    HPE MLIS is *Aioli* -- The AI On-line Inference Platform that enables easy deployment, tracking, and serving of your packaged models regardless of your preferred AI framework.

    The version of the OpenAPI document: 1.0.0
    Contact: community@determined-ai
    Generated by OpenAPI Generator (https://openapi-generator.tech)

    Do not edit the class manually.
"""  # noqa: E501


from __future__ import annotations
import pprint
import re  # noqa: F401
import json


from typing import Any, ClassVar, Dict, List, Optional
from pydantic import BaseModel, StrictBool, StrictStr
from pydantic import Field
try:
    from typing import Self
except ImportError:
    from typing_extensions import Self

class User(BaseModel):
    """
    Name and properties of a user.
    """ # noqa: E501
    active: Optional[StrictBool] = Field(default=None, description="Allows for disabling a user without deleting them.   Only active users an login.")
    display_name: StrictStr = Field(description="Display name of the user in the UI.", alias="displayName")
    id: Optional[StrictStr] = Field(default=None, description="The ID of the user. This is a read-only field and is automatically assigned on creation.")
    last_auth_at: Optional[StrictStr] = Field(default=None, description="Date-time of last use of this account. This is a read-only field and is automatically updated.", alias="lastAuthAt")
    modified_at: Optional[StrictStr] = Field(default=None, description="Date-time of last modification of the user configuration. This is a read-only field and is automatically updated.", alias="modifiedAt")
    remote: Optional[StrictBool] = Field(default=None, description="User data comes from a external/remote provider. This is a read-only field and is automatically updated.")
    username: StrictStr = Field(description="The user name used for login.")
    __properties: ClassVar[List[str]] = ["active", "displayName", "id", "lastAuthAt", "modifiedAt", "remote", "username"]

    model_config = {
        "populate_by_name": True,
        "validate_assignment": True
    }


    def to_str(self) -> str:
        """Returns the string representation of the model using alias"""
        return pprint.pformat(self.model_dump(by_alias=True))

    def to_json(self) -> str:
        """Returns the JSON representation of the model using alias"""
        # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
        return json.dumps(self.to_dict())

    @classmethod
    def from_json(cls, json_str: str) -> Self:
        """Create an instance of User from a JSON string"""
        return cls.from_dict(json.loads(json_str))

    def to_dict(self) -> Dict[str, Any]:
        """Return the dictionary representation of the model using alias.

        This has the following differences from calling pydantic's
        `self.model_dump(by_alias=True)`:

        * `None` is only added to the output dict for nullable fields that
          were set at model initialization. Other fields with value `None`
          are ignored.
        """
        _dict = self.model_dump(
            by_alias=True,
            exclude={
            },
            exclude_none=True,
        )
        return _dict

    @classmethod
    def from_dict(cls, obj: Dict) -> Self:
        """Create an instance of User from a dict"""
        if obj is None:
            return None

        if not isinstance(obj, dict):
            return cls.model_validate(obj)

        _obj = cls.model_validate({
            "active": obj.get("active"),
            "displayName": obj.get("displayName"),
            "id": obj.get("id"),
            "lastAuthAt": obj.get("lastAuthAt"),
            "modifiedAt": obj.get("modifiedAt"),
            "remote": obj.get("remote"),
            "username": obj.get("username")
        })
        return _obj

Classes

class User (**data: Any)

Name and properties of a user.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Expand source code
class User(BaseModel):
    """
    Name and properties of a user.
    """ # noqa: E501
    active: Optional[StrictBool] = Field(default=None, description="Allows for disabling a user without deleting them.   Only active users an login.")
    display_name: StrictStr = Field(description="Display name of the user in the UI.", alias="displayName")
    id: Optional[StrictStr] = Field(default=None, description="The ID of the user. This is a read-only field and is automatically assigned on creation.")
    last_auth_at: Optional[StrictStr] = Field(default=None, description="Date-time of last use of this account. This is a read-only field and is automatically updated.", alias="lastAuthAt")
    modified_at: Optional[StrictStr] = Field(default=None, description="Date-time of last modification of the user configuration. This is a read-only field and is automatically updated.", alias="modifiedAt")
    remote: Optional[StrictBool] = Field(default=None, description="User data comes from a external/remote provider. This is a read-only field and is automatically updated.")
    username: StrictStr = Field(description="The user name used for login.")
    __properties: ClassVar[List[str]] = ["active", "displayName", "id", "lastAuthAt", "modifiedAt", "remote", "username"]

    model_config = {
        "populate_by_name": True,
        "validate_assignment": True
    }


    def to_str(self) -> str:
        """Returns the string representation of the model using alias"""
        return pprint.pformat(self.model_dump(by_alias=True))

    def to_json(self) -> str:
        """Returns the JSON representation of the model using alias"""
        # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
        return json.dumps(self.to_dict())

    @classmethod
    def from_json(cls, json_str: str) -> Self:
        """Create an instance of User from a JSON string"""
        return cls.from_dict(json.loads(json_str))

    def to_dict(self) -> Dict[str, Any]:
        """Return the dictionary representation of the model using alias.

        This has the following differences from calling pydantic's
        `self.model_dump(by_alias=True)`:

        * `None` is only added to the output dict for nullable fields that
          were set at model initialization. Other fields with value `None`
          are ignored.
        """
        _dict = self.model_dump(
            by_alias=True,
            exclude={
            },
            exclude_none=True,
        )
        return _dict

    @classmethod
    def from_dict(cls, obj: Dict) -> Self:
        """Create an instance of User from a dict"""
        if obj is None:
            return None

        if not isinstance(obj, dict):
            return cls.model_validate(obj)

        _obj = cls.model_validate({
            "active": obj.get("active"),
            "displayName": obj.get("displayName"),
            "id": obj.get("id"),
            "lastAuthAt": obj.get("lastAuthAt"),
            "modifiedAt": obj.get("modifiedAt"),
            "remote": obj.get("remote"),
            "username": obj.get("username")
        })
        return _obj

Ancestors

  • pydantic.main.BaseModel

Class variables

var active : Optional[bool]
var display_name : str
var id : Optional[str]
var last_auth_at : Optional[str]
var model_computed_fields
var model_config
var model_fields
var modified_at : Optional[str]
var remote : Optional[bool]
var username : str

Static methods

def from_dict(obj: Dict) ‑> Self

Create an instance of User from a dict

Expand source code
@classmethod
def from_dict(cls, obj: Dict) -> Self:
    """Create an instance of User from a dict"""
    if obj is None:
        return None

    if not isinstance(obj, dict):
        return cls.model_validate(obj)

    _obj = cls.model_validate({
        "active": obj.get("active"),
        "displayName": obj.get("displayName"),
        "id": obj.get("id"),
        "lastAuthAt": obj.get("lastAuthAt"),
        "modifiedAt": obj.get("modifiedAt"),
        "remote": obj.get("remote"),
        "username": obj.get("username")
    })
    return _obj
def from_json(json_str: str) ‑> Self

Create an instance of User from a JSON string

Expand source code
@classmethod
def from_json(cls, json_str: str) -> Self:
    """Create an instance of User from a JSON string"""
    return cls.from_dict(json.loads(json_str))

Methods

def model_post_init(self: BaseModel, context: Any, /) ‑> None

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Args

self
The BaseModel instance.
context
The context.
Expand source code
def init_private_attributes(self: BaseModel, context: Any, /) -> None:
    """This function is meant to behave like a BaseModel method to initialise private attributes.

    It takes context as an argument since that's what pydantic-core passes when calling it.

    Args:
        self: The BaseModel instance.
        context: The context.
    """
    if getattr(self, '__pydantic_private__', None) is None:
        pydantic_private = {}
        for name, private_attr in self.__private_attributes__.items():
            default = private_attr.get_default()
            if default is not PydanticUndefined:
                pydantic_private[name] = default
        object_setattr(self, '__pydantic_private__', pydantic_private)
def to_dict(self) ‑> Dict[str, Any]

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic's self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
Expand source code
def to_dict(self) -> Dict[str, Any]:
    """Return the dictionary representation of the model using alias.

    This has the following differences from calling pydantic's
    `self.model_dump(by_alias=True)`:

    * `None` is only added to the output dict for nullable fields that
      were set at model initialization. Other fields with value `None`
      are ignored.
    """
    _dict = self.model_dump(
        by_alias=True,
        exclude={
        },
        exclude_none=True,
    )
    return _dict
def to_json(self) ‑> str

Returns the JSON representation of the model using alias

Expand source code
def to_json(self) -> str:
    """Returns the JSON representation of the model using alias"""
    # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
    return json.dumps(self.to_dict())
def to_str(self) ‑> str

Returns the string representation of the model using alias

Expand source code
def to_str(self) -> str:
    """Returns the string representation of the model using alias"""
    return pprint.pformat(self.model_dump(by_alias=True))