Datum Batching
By default, HPE Machine Learning Data Management processes each datum independently. This means that your user code is called once for each datum. This can be inefficient and costly if you have a large number of small datums or if your user code is slow to start.
When you have a large number of datums, you can batch them to optimize performance. HPE Machine Learning Data Management provides a next datum
command that you can use to batch datums.
Flow Diagram #
flowchart LR user_code(User Code) ndsuccess(NextDatum) nderror("NextDatum(error)") response(NextDatumResponse) process_datum{process datum} cmd_err(Run cmd_err) kill[Kill User Code] datum?{datum exists?} retry?{retry?} cmd_err?{cmd_err defined} user_code ==>ndsuccess ndsuccess =====> datum? datum? ==>|yes| process_datum process_datum ==>|success| response response ==> user_code datum? -->|no| kill process_datum -->|fail| nderror nderror --> cmd_err? cmd_err? -->|yes| cmd_err cmd_err? -->|no|kill cmd_err --> retry? retry? -->|yes| response retry? -->|no| kill
How to Batch Datums #
-
Define your user code and build a docker image. Your user code must call
pachctl next datum
to get the next datum to process. -
Create a repo (e.g.,
pachctl create repo repoName
). -
Define a pipeline spec in YAML or JSON that references your Docker image and repo.
-
Add the following to the
transform
section of your pipeline spec:datum_batching: true
pipeline: name: p_datum_batching_example input: pfs: repo: repoName glob: "/*" transform: datum_batching: true image: user/docker-image:tag
-
Create the pipeline (e.g.,
pachctl update pipeline -f pipeline.yaml
). -
Monitor the pipeline’s state either via Console or via
pachctl list pipeline
.
FAQ #
Q: My pipeline started but no files from my input repo are present. Where are they?
A: Files from the first datum are mounted following the first call to NextDatum
or, when using the Python client, when code execution enters the decorated function.
Q: How can I set environment variables when the datum runs?
A: You can use the .env
file accessible from the /pfs
directory. To easily locate your .env
file, you can do the following:
def find_files(pattern):
return [f for f in glob.glob(os.path.join("/pfs", "**", pattern), recursive=True)]
env_file = find_files(".env")